Force

Load pin Measuring range up to 10,000 kN Model F5802

WIKA data sheet FO 51.55

CE

Applications

- Crane systems and hoists
- Industrial weighing technology
- Machine building and plant construction,
- Manufacturing automation
- Theatre and stage construction

Special features

- Measuring ranges 0 ... 5 kN up to 0 ... 10,000 kN
- Corrosion-resistant stainless steel design
- Existing non-measuring bolts are simply replaced by the measuring axes
- For overload protection in cranes and hoists
- Good reproducibility, simple installation

Load pin, model F5802

Description

Load pins are designed for static and dynamic measurement tasks. They directly replace non-measuring bolts and determine the tension and compression forces in a wide range of applications.

Load pins of this series are mainly used in hoists and crane systems. They also serve as reliable sensors in industrial weighing technology as well as in the field of Special mechanical engineering, where they are used in particular in pulleys, cable winches, fork or roller bearings. Other areas of application include mechanical and plant engineering as well as theater and stage construction, where they reliably prevent overloads.

These load pins are made of high-strength, corrosion resistant stainless steel, which is particularly suitable for their application areas.

WIKA data sheet FO 51.55 · 06/2022

Data sheets showing similar products of load pin models:

"Load pin with thin film technology, standard and Atex version", data sheet; FO 51.18 model F5301, F53C1 "Heavy duty load pin with thin film technology, standard, Atex and safety version", data sheet: FO 51.43 model F5308, F53C8, F53S8 "Load pin, standard and Atex version", data sheet: FO 51.53 model F52C8, F5280 Page 1 of 3

Technical data in accordance with VDI/VDE/DKD 2638

Model	F5802	
Rated force F _{nom} kN	20 10,000	
Relative linearity error d _{lin} d _{lin} ¹⁾	0.5 % 1 % F _{nom}	
Relative Umkehrspanne v	0.5 % 1 % F _{nom}	
Relative repeatability error in unchanged mounting position $\mathbf{b}_{\rm rg}$	0.5 % 1 % F _{nom}	
Temperature effect on		
characteristic value TK _C	0.2 % Fnom /10 K	
zero signal TK ₀	0.2 % Fnom /10 K	
Force limit FL	150 % F _{nom}	
Breaking force F _B	300 % F _{nom}	
Material of measuring device	Stainless steel corrosion-resistant	
Rated temperature B _{T, nom}	-10 +40 °C	
Operating temperature B _{T, G}	-20 +80 °C	
Electrical connection	M12 x 1, 4-pin	
Output signal (rated output) C _{nom}	1 2 mV/V ±10 % F _{nom}	
Input resistance R _e	$750 \pm 30 \Omega$	
Output resistance R _a	$700 \pm 5 \Omega$	
Isulation resistance R _{iS}	≥ 5,000 MΩ	
Excitation voltage	DC 5 10 V (max 15 V)	
Protection (acc. to IEC/EN 60529)	IP67	

1) Relative linearity error acc. to VDI/VDE/DKD 2638 chap. 3.2.6

Approval

Logo	Description	Region
"	EU declaration of conformity	European Union
	EMC directive	
	RoHS directive	

Figure

Dimensions: the customer-specific load pin drawing for the specific article number applies above all.

Pin assignment analog output

Circular connector M12 x 1, 4-pin

Circular connector M12 x 1, 5-pin

Connect the cable shield to the force transducer housing. In the case of accessory cables, the cable shield must be connected with the knurled nut and thus connected to the housing of the force transducer. When extending, only shielded and low capacitance cables should be used. The permitted maximum and minimum lengths of the cable are specified in ISO 11898-2. A high-quality connection of the shielding must also be ensured.

Pin assignment

Electrical connection	
Excitation voltage (+)	Red
Excitation voltage (-)	Black
Signal (+)	Green
Signal (-)	White
Screen 🕀	Shield

© 6/2022 WIKA Alexander Wiegand SE & Co. KG, all rights reserved. The specifications given in this document represent the state of engineering at the time of publishing. We reserve the right to make modifications to the specifications and materials.

WIKA data sheet FO 51.55 · 06/2022

WIKA Alexander Wiegand SE & Co. KG Alexander-Wiegand-Straße 30 63911 Klingenberg/Germany Tel. +49 9372 132-0 Fax +49 9372 132-406 info@wika.de www.wika.de

Page 3 of 3